Central Object Segmentation by Deep Learning to Continuously Monitor Fruit Growth through RGB Images

Author:

Fukuda MotohisaORCID,Okuno TakashiORCID,Yuki Shinya

Abstract

Monitoring fruit growth is useful when estimating final yields in advance and predicting optimum harvest times. However, observing fruit all day at the farm via RGB images is not an easy task because the light conditions are constantly changing. In this paper, we present CROP (Central Roundish Object Painter). The method involves image segmentation by deep learning, and the architecture of the neural network is a deeper version of U-Net. CROP identifies different types of central roundish fruit in an RGB image in varied light conditions, and creates a corresponding mask. Counting the mask pixels gives the relative two-dimensional size of the fruit, and in this way, time-series images may provide a non-contact means of automatically monitoring fruit growth. Although our measurement unit is different from the traditional one (length), we believe that shape identification potentially provides more information. Interestingly, CROP can have a more general use, working even for some other roundish objects. For this reason, we hope that CROP and our methodology yield big data to promote scientific advancements in horticultural science and other fields.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3