Abstract
Purpose: To investigate the toxicity of the low-molecular-weight components (LMWCs) in ophthalmic silicone oils (SilOils) on retinal cell lines. Methods: The toxicity of six types of LMWCs were studied and compared with conventional SilOil 1000 cSt. In vitro cytotoxic tests of LMWCs, in both liquid and emulsified forms, on three retinal cell lines (Müller cells (rMC-1), photoreceptor cells (661W) and retinal pigment epithelial cells (ARPE-19)) were conducted using a transwell cell culturing system. The morphology and viability of cells were assessed by light microscopy and Cell Counting Kit-8 (CCK-8) assay at different time points (6, 24 and 72 h). The ARPE-19 apoptotic pathway was investigated by Mitochondrial Membrane Potential/Annexin V Apoptosis Kit at different time points (6, 24 and 72 h). Results: Apart from dodecamethylpentasiloxane (L5), all liquid LMWCs showed varying degrees of acute cytotoxicity on retinal cell lines within 72 h. Emulsified LMWCs showed comparable cytotoxicity with liquid LMWCs on retinal cell lines. Cyclic LMWCs, octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) had significantly higher cytotoxicity when compared with their linear counterparts decamethyltetrasiloxane (L4) and L5 with similar molecular formula. Using ARPE-19 cells as an example, we showed that LMWCs induce the apoptosis of retinal cells. Conclusions: Most LMWCs, in both liquid and emulsified forms, can induce acute cytotoxicity. In addition, cyclic LMWCs are suspected to have higher cytotoxicity than their linear counterparts. Therefore, LMWCs are suspected to be the main cause of the long-term toxicity of ophthalmic SilOil, due to their toxicity and propensity to cause ophthalmic SilOil to emulsify. The amount of LMWCs should be considered as the paramount parameter when referring to the quality of SilOil.
Funder
The University of Hong Kong
Subject
General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献