Recycled PET Sand for Cementitious Mortar

Author:

Campanhão Angélica Faria,Marvila Markssuel Teixeira,de Azevedo Afonso R. G.ORCID,da Silva Tulane Rodrigues,Fediuk RomanORCID,Vatin NikolaiORCID

Abstract

Cementitious materials cause a great impact on the environment due to the calcination of clinker and the extraction of non-renewable mineral resources. In this work, the replacement of quartz sand from the river by PET sand was evaluated at levels of 10%, 20%, and 30%. Tests were performed in the fresh state through consistency, air retention, density, and incorporated air and in the hardened state for compressive strength, flexural strength, density, capillarity, and water absorption. The results show that PET sand is viable in contents of up to 10%, improving the mechanical properties of the mortar and without compromising its workability and incorporated air properties. Above that level, the loss of properties is very excessive, mainly of workability and incorporated air. The incorporated air of the 30% composition, for example, reaches 24%, an excessive value that impacts the properties of the hardened state, making it impossible to use the material at levels greater than 20%. It is concluded that the use of recycled PET sand is a possibility that contributes to sustainable development, as it reduces the extraction of quartz sand from the river, a non-renewable mineral resource.

Funder

Ministry of Science and Education of the Russian Federation

Publisher

MDPI AG

Subject

General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3