Fast Minimum Error Entropy for Linear Regression

Author:

Li Qiang1,Liao Xiao1,Cui Wei1,Wang Ying1,Cao Hui2ORCID,Guan Qingshu2ORCID

Affiliation:

1. State Grid Information & Telecommunication Group Co., Ltd., Beijing 102209, China

2. School of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

The minimum error entropy (MEE) criterion finds extensive utility across diverse applications, particularly in contexts characterized by non-Gaussian noise. However, its computational demands are notable, and are primarily attributable to the double summation operation involved in calculating the probability density function (PDF) of the error. To address this, our study introduces a novel approach, termed the fast minimum error entropy (FMEE) algorithm, aimed at mitigating computational complexity through the utilization of polynomial expansions of the error PDF. Initially, the PDF approximation of a random variable is derived via the Gram–Charlier expansion. Subsequently, we proceed to ascertain and streamline the entropy of the random variable. Following this, the error entropy inherent to the linear regression model is delineated and expressed as a function of the regression coefficient vector. Lastly, leveraging the gradient descent algorithm, we compute the regression coefficient vector corresponding to the minimum error entropy. Theoretical scrutiny reveals that the time complexity of FMEE stands at O(n), in stark contrast to the O(n2) complexity associated with MEE. Experimentally, our findings underscore the remarkable efficiency gains afforded by FMEE, with time consumption registering less than 1‰ of that observed with MEE. Encouragingly, this efficiency leap is achieved without compromising accuracy, as evidenced by negligible differentials observed between the accuracies of FMEE and MEE. Furthermore, comprehensive regression experiments on real-world electric datasets in northwest China demonstrate that our FMEE outperforms baseline methods by a clear margin.

Funder

State Grid Information and Telecommunication Group scientific and technological innovation projects “Research on Power Digital Space Technology System and Key Technologies”

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3