Study on the Effect of Freeze–Thaw Action on the Electrical Conductivity and Sensing Properties of Graphene-Based Cement Composites

Author:

Chen HuihuiORCID,Xu Ning,Jiang PengORCID,Jiang Linhua

Abstract

Graphene can effectively improve the mechanical and electrical properties of cement-based materials due to its excellent tensile strength, thermal conductivity and electrical conductivity. In this paper, the effects of freeze–thaw on the conductivity and sensing properties of graphene-based cement materials were investigated. After the preparation of graphene-based cement materials, they were subjected to different times of freeze–thaw action. The experiments were designed to analyze the influence of freeze–thaw on the electrical conductivity, humidity sensitivity, thermosensitivity and pressure sensitivity of graphene-based cement composites. The results show that the influence of freeze–thaw on the electrical conductivity of graphene is mainly manifested in the influence on the resistivity and the extension of the polarization time, and the influence on the percolation transition zone is small. After freeze–thaw, the polarization time of the specimen decreases with the increase of the relative water content. The temperature has a great influence on the polarization effect of graphene-based cement composites and the composites with graphene content of the zone B still show satisfactory pressure-sensitive property after freeze–thaw.

Funder

National Key Research and Development Plan of China

National Key Technology Research and Development Program of the Ministry of Science and Technology of China

Special Fund for Basic Research Business Expenses of Central Public Welfare Research Institute

Publisher

MDPI AG

Subject

General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3