Author:
Wang Wenwen,Bai Xinyi,Yuan Xiaochu,Liu Yumin,Yang Lin,Chang Fangfang
Abstract
The compositions and surface facets of platinum (Pt)-based electrocatalysts are of great significance for the development of direct alcohol fuel cells (DAFCs). We reported an approach for preparing ultrathin PtnCo100−n nanowire (NW) catalysts with high activity. The PtnCo100−n NW alloy catalysts synthesized by single-phase surfactant-free synthesis have adjustable compositions and (111) plane and strain lattices. X-ray diffraction (XRD) results indicate that the alloy composition can adjust the lattice shrinkage or expansion of PtnCo100−n NWs. X-ray photoelectron spectroscopy (XPS) results show that the electron structure of Pt is changed by the alloying effect caused by electron modulation in the d band, and the chemical adsorption strength of Pt is decreased, thus the catalytic activity of Pt is increased. The experimental results show that the activity of PtnCo100−n for the oxidation of methanol and ethanol is related to the exposed crystal surface, strain lattice and composition of catalysts. The PtnCo100−n NWs exhibit stronger electrocatalytic performance for both methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR). The dominant (111) plane Pt53Co47 exhibits the highest electrocatalytic activity in MOR, which is supported by the results of XPS. This discovery provides a new pathway to design high activity, stability nanocatalysts to enhance direct alcohol fuel cells.
Funder
the National Science Foundation of China
111 project
Henan Center for Outstanding Overseas Scientists
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献