Characterization and under Water Action Behaviour of a New Plaster-Based Lightened Composites for Precast

Author:

Álvarez ManuelORCID,Ferrández Daniel,Guijarro-Miragaya Patricia,Morón CarlosORCID

Abstract

Plaster is a construction material widely used for the production of prefabricated parts in building construction due to its high capacity for hygrothermal regulation, its good mechanical performance, and its fireproof nature, among other factors. Its historical use has been linked to ornamental elements, although more recent research is oriented towards the industrialisation of plaster composites and the design of prefabricated parts for false ceilings and interior partitions. In this work, the behaviour against water of four new plaster-based composite materials is studied, using additions of two types of super absorbent polymers (sodium polyacrylate and potassium polyacrylate) and a lightening material (vermiculite) in their manufacturing process. In addition, the transmission of water vapour through the samples was studied together with the water absorption capacity of the samples in order to check the suitability of the use of plaster-based materials exposed to these environments. The results of this study show that composites with the addition of super absorbent polymers as well as vermiculite significantly improve their water performance compared to traditional materials up to 7.3% water absorption with a minimal (13%) reduction in mechanical strength compared to current materials with similar additions. In this sense, a plaster material is obtained with wide possibilities of application in the construction sector that favours the development of sustainable and quality buildings, in line with Goal 9 for Sustainable Development included in the 2030 Agenda.

Publisher

MDPI AG

Subject

General Materials Science

Reference47 articles.

1. Development of plaster foam for thermal and acoustic applications;Arroyo;Constr. Build. Mater.,2020

2. Restoration of ancient gypsum-based plasters: Design of compatible materials;Freire;Cem. Concr. Compos.,2021

3. Modifications to improve properties of gypsum ceiling composites as multifunctional construction by embedding Typha angustifolia fiber and natural rubber latex compound;Muntongkaw;Case Stud. Constr. Mater.,2021

4. Analysis of the feasibility of the use of CDW as a low-environmental-impact aggregate in conglomerates;Barriguete;Constr. Build. Mater.,2018

5. Investigation of gypsum composites with different lightweight fillers;Keppert;Constr. Build. Mater.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3