Comparison of Milled Full-Arch Implant-Supported Frameworks Realised with a Full Digital Workflow or from Conventional Impression: A Clinical Study

Author:

Pera Francesco,Pesce PaoloORCID,Bagnasco Francesco,Pancini Nicolò,Carossa MassimoORCID,Baldelli Lorenzo,Annunziata MarcoORCID,Migliorati MarcoORCID,Baldi Domenico,Menini MariaORCID

Abstract

Background: The aim of the present study was to investigate the accuracy of a new digital impression system, comparing it to the plaster impression technique in the realization of full-arch implant-supported metal frameworks. Methods: We took 11 scans (8 of the upper maxilla and 3 of the lower jaw) on a sample of nine patients previously rehabilitated with fixed full-arch screw-retained prostheses following the Columbus Bridge Protocol (CBP) with four to six implants (total: 51) since at least 4 months. Two impressions were taken for each dental arch: one analogic plaster impression using pick-up copings and an open tray technique and a second one using an intra-oral scanner. Two milled metal substructures were realised. The precision and passivity of the substructures were clinically analysed through the Sheffield test and endo-oral radiographs. Laboratory scans of the plaster casts obtained from an intra-oral scanner (IOS) and of the plaster casts obtained from traditional impression were compared with the intraoral scans following Hausdorff’s method and an industrial digital method of optical detection to measure discrepancies. A Mann–Whitney test was performed in order to investigate average distances between surfaces after the superposition. Results: The Sheffield test demonstrated an excellent passivity of the frameworks obtained through both the digital and the analogic method. In 81.81% of cases (n = 9) both substructures were found to have a perfect fit with excellent passivity, while in 18.18% (n = 2) of cases the substructures were found to have a very slight discrepancy. From the radiographic examination, no gaps between the frameworks and the implant heads or multiunit abutments were observed, with 100% accuracy. By superimposing digital files of scans according to Hausdorff’s method, a statistically significant discrepancy (p = 0.006) was found between the digital scans and the digital models obtained from plaster impressions. Three-dimensional optical detection found a mean discrepancy of 0.11 mm between the analogic cast and the cast derived from the digital impression. Conclusions: The present study clinically demonstrates that milled implant-supported full-arch frameworks obtained through a digital scan and the herein described technique have an accuracy comparable to those obtained with traditional plaster impression.

Funder

Mech & Human

Publisher

MDPI AG

Subject

General Materials Science

Reference45 articles.

1. Status of current CAD/CAM technology in dental medicine;Tinschert;Int. J. Comput. Dent.,2004

2. CAD-CAM in dentistry;Duret;J. Am. Dent. Assoc.,1988

3. The new creativity in ceramic restorations: Dental CAD-CIM;Mormann;Quintessence Int.,1996

4. Chairside computer-aided direct ceramic inlays;Mormann;Quintessence Int.,1989

5. CNC-milled titanium frameworks supported by implants in the edentulous jaw: A 10-year comparative clinical study;Ortorp;Clin. Implant. Dent. Relat. Res.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3