Rotating Bending Fatigue Behaviors of C17200 Beryllium Copper Alloy at High Temperatures

Author:

Lai Fuqiang,Mao Kun,Cao Changsheng,Hu Anqiong,Tu Junxiang,Lin Youxi

Abstract

The purpose of this paper is to investigate the fatigue properties of C17200 alloy under the condition of quenching aging heat treatment at high temperatures, and to provide a design reference for its application in a certain temperature range. For this purpose, the tensile and rotary bending fatigue (RBF) tests were carried out at different temperatures (25 °C, 150 °C, 350 °C, and 450 °C). The tensile strength was obtained, and relationships between the applied bending stress levels and the number of fatigue fracture cycles were fitted to the stress-life (S-N) curves, and the related equations were determined. The fractured surfaces were observed and analyzed by a scanning electron microscopy (SEM). The results show that the RBF fatigue performance of C17200 alloy specimens is decreased with the increase in test temperature. When the temperature is below 350 °C, the performance degradation amplitudes of mechanical properties and RBF fatigue resistance are at a low level. However, compared to the RBF fatigue strength of 1 × 107 cycles at 25 °C, it is decreased by 38.4% when the temperature reaches 450 °C. It is found that the fatigue failure type of C17200 alloy belongs to surface defect initiation. Below 350 °C, the surface roughness of the fatigue fracture is higher, which is similar to the brittle fracture, so the boundary of the fracture regions is not obvious. At 450 °C, due to the further increase in temperature, oxidation occurs on the fracture surface, and the boundary of typical fatigue zone is obvious.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Reference35 articles.

1. Research progress on properties and heat treatment of beryllium bronze;Fang;Tech. Cast.,2020

2. Study on high strength variant inlaid bronze Shanghai Metals;Pan;Nonferrous Met. Sect.,1983

3. Comparative experimental study on fatigue properties of beryllium bronze;Fan;Hunan Nonferrous Met.,2001

4. Pang, J.C., Li, S.X., and Zhang, Z.F. (2010, January 26). High cycle fatigue fracture mechanism of high strength QBe2 beryllium bronze. Proceedings of the 15th National Fatigue and Fracture Academic Symposium, Foshan, China.

5. Failure analysis and mechanism of QBe2 spring piece;Wang;Hot Work. Technol.,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3