New Constraints on Slip Behavior of the Jianshui Strike-Slip Fault from Faulted Stream Channel Risers and Airborne Lidar Data, SE Tibetan Plateau, China

Author:

Guo Peng,Han Zhujun,Dong Shaopeng,Gao Fan,Li Jiani

Abstract

The temporal slip behavior of a fault from displaced landforms when there are no chronological data remains poorly understood. The southern segment of the Xiaojiang fault zone (XJFZ) plays an important role in accommodating the lateral extrusion of the SE Tibetan plateau. However, there are few reports on the evolution of the offset landforms and slip behavior of the fault due to the dense vegetation in the region. Here, offset landforms along the Jianshui fault (JSF) in the southern segment of the XJFZ are systematically interpreted and measured using high-resolution satellite imagery, field investigations, and airborne lidar. The risers on the right banks of three stream channels feature similar left-lateral offset characteristics near the town of Dongshanzhai. The left-lateral offsets consist of multiple inflections produced by seismic events, and the offset of each event is similar. These inflections are distributed downstream in a stair-stepped manner. The newly formed inflections are located close to the fault, and the earlier formed ones are eroded by flowing water and migrate downstream. The difference between the amount of downstream erosion of two adjacent inflections varies. Assuming the stream’s long-term erosion rate remains steady, the estimated time intervals between seismic events are different. Combined with the cumulative offset probability density calculation for 92 offsets, the JSF is considered to show a nonperiodic characteristic earthquake recurrence pattern. We also propose a multistage offset evolution model of the stream channel riser. This provides a new way to analyze the seismic recurrence pattern of the fault over a relative time scale.

Funder

National Natural Science Foundation of China

National Nonprofit Fundamental Research Grant of China, Institute of Geology, China Earthquake Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3