Abstract
Acid mine drainage (AMD) is a waste from mining sites, usually acidic, with high concentrations of sulfates and heavy metal ions. This study investigates the AMD neutralization process using fly ash (FA) as an alternative material. Samples of FA from coal-fired power plants in Serbia (“Nikola Tesla” (EF) and “Kostolac” (KOST)) were analyzed and used. The results were compared with the treatment efficiency of commercial neutralization agent (NaOH). The alkaline nature of FA was the basis for use in the treatment process of the extremely acid Lake Robule (pH 2.46), located in the mining areas of eastern Serbia. The optimal S/L ratio for the AMD neutralization process determined for EF was 25 wt.%, and for KOST it was 20 wt.%. The mechanism of the neutralization process was analyzed using the ANC test and PHREEQC program. The element concentrations and pH values in solutions indicated that FA samples could neutralize Lake Robule with more than 99% of Al, Fe, Cu, Zn, and more than 89% of Pb precipitated. Formation of insoluble (oxy)hydroxide forms (Fe3+ and Al3+ ions) creates favorable conditions for co-precipitation of other trace metals (Cu, Zn, Ni, Pb, and Cd) from AMD, which is further enhanced by cation adsorption on FA particles. FA proved to be a more effective neutralization agent than NaOH due to its adsorption effect, while among the FA samples, KOST was more effective due to the aging process through the carbonization reaction. Using FA as an alternative material is a promising and sustainable method for treating AMD, with economic and environmental benefits.
Funder
Ministry of Education, Science and Technological Development of the Republic of Serbia
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献