Computer-Assisted Bioidentification Using Freshwater Macroinvertebrates: A Scoping Review

Author:

Cruz Lilian DayanaORCID,Lopez Diego MauricioORCID,Vargas-Canas RubielORCID,Figueroa ApolinarORCID,Corrales Juan CarlosORCID

Abstract

Background: Evaluation and prediction of the freshwater status based on freshwater macroinvertebrates (FwM) has become valuable in bioindication because they provide a more general and accurate picture of the ecological status of water bodies over time. Recent research on bioindication through FwM has increased the use of computational technologies, mainly in the classification and data analysis stages of water quality assessment and prediction. Objective: This scoping review aims to provide an overview of different approaches in computer-assisted bioindication with FwM. Particularly, the objective is to identify the techniques and strategies employed for FwM automatic classification or data treatment, characterize their use in recent years, and discuss gaps and challenges to broaden the scope of bioindication as a tool for understanding real conditions in a water body. Design: The scoping review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) extension for scoping reviews (ScR). Scopus and Web of Science databases were used to identify articles published between 1999 and 2022. We selected 81 publications that used computational technology for automatic FwM classification or data analysis to predict water quality using biological indices. Results and conclusions: We identified two areas of applying computational technologies in bioindication studies with FwM. Firstly, computer-assisted technologies are used to evaluate water quality through samples already classified by human experts which correspond to 57% of the documents analyzed. The second application area is the automatic classification of FwM. In addition, we determined the main critical factors affecting strategy selection in each of the studies, such as taxonomic resolution, sample size and quality, image quality, data size, and complexity. Finally, we established the relationship between the strategies and algorithms employed in a timeline for automatic classification according to available FwM image databases. The research will allow taxonomic and related experts to better understand the role of computational technologies in FwM studies and thus increase confidence in these techniques to extend their use in bioassessment tasks.

Funder

Bicentennial Excellence Doctoral Scholarship Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference104 articles.

1. Applications of symbolic machine learning to ecological modelling

2. Guía Para el Estudio de los Macroinvertebrados Acuáticos del Departamento de Antioquia;Roldán,1988

3. Bioindicators & Biomonitors: Principles, Concepts, and Applications,2003

4. Macroinvertebrados Bentónicos Sudamericanos: Sistemática y Biología,2009

5. Different effects of reclamation methods on macrobenthos community structure in the Yangtze Estuary, China

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3