The Genesis Mechanism and Health Risk Assessment of High Boron Water in the Zhaxikang Geothermal Area, South Tibet

Author:

Li LiangORCID,Wang YingchunORCID,Gu Hongyu,Lu Lianghua,Li Luping,Pang Jumei,Chen FeifeiORCID

Abstract

The natural discharge of geothermal water containing harmful components affects the water quality of the surrounding environment and brings security risks to drinking water safety. The geothermal water in Tibet is characterized by high boron content, but the water pollution caused by the discharge of this high boron geothermal water is not clear. In this study, we collected geothermal water and surface water from the Zhaxikang geothermal system in southern Tibet to investigate the causes of high boron geothermal water and the water pollution of water quality by its discharge. The results indicate that the hydrochemical type of geothermal water was HCO3-Cl-Na, while that of cold spring water, mine water, river water, and lake water was SO4-HCO3-Ca-Mg. Hydrogen and oxygen isotopes show that the recharge source of cold groundwater was mainly snow-melting water and meteoric water, while in addition to that, there is magmatic water for hot springs. The boron content of geothermal water in the study area is as high as 42.36 mg/L, far exceeding the World Health Organization limit for drinking water (0.5 mg/L). The analysis of ion components and PHREEQC modeling indicated that the dissolution of silicate minerals and cation exchange controlled the composition of groundwater, and the boron in groundwater mainly came from the volatilization of magmatic components and the leaching of shallow sediments. The entropy weight water quality index was used to evaluate the water quality of the study area; about 42.9% of the groundwater samples are of good quality and can be used for drinking, mainly cold water that has not been mixed with geothermal water in the upstream. With the discharge of geothermal water into the river (with a mix ratio of ~20%), the downstream water quality gradually deteriorated. The health risk assessment of drinking water in the study area showed that the hazard index (HI) of drinking water in the mixed area was higher than 1 (with an average of 1.594 for children and 1.366 for adults), indicating that children are at a higher health risk than adults. Geothermal water with high boron content has been found all over the world, and the adverse effects of its natural drainage cannot be ignored.

Funder

National Natural Science Foundation of China

Second Tibetan Plateau Scientific Expedition and Research Program

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3