Enhancement of Antimicrobial Activity of Alginate Films with a Low Amount of Carbon Nanofibers (0.1% w/w)

Author:

Sanmartín-Santos IsaíasORCID,Gandía-Llop Sofía,Salesa BeatrizORCID,Martí MiguelORCID,Lillelund Aachmann FinnORCID,Serrano-Aroca ÁngelORCID

Abstract

The World Health Organization has called for new effective and affordable alternative antimicrobial materials for the prevention and treatment of microbial infections. In this regard, calcium alginate has previously been shown to possess antiviral activity against the enveloped double-stranded DNA herpes simplex virus type 1. However, non-enveloped viruses are more resistant to inactivation than enveloped ones. Thus, the viral inhibition capacity of calcium alginate and the effect of adding a low amount of carbon nanofibers (0.1% w/w) were explored here against a non-enveloped double-stranded DNA virus model for the first time. The results of this study showed that neat calcium alginate films partly inactivated this type of non-enveloped virus and that including that extremely low percentage of carbon nanofibers (CNFs) significantly enhanced its antiviral activity. These calcium alginate/CNFs composite materials also showed antibacterial properties against the Gram-positive Staphylococcus aureus bacterial model and no cytotoxic effects in human keratinocyte HaCaT cells. Since alginate-based materials have also shown antiviral activity against four types of enveloped positive-sense single-stranded RNA viruses similar to SARS-CoV-2 in previous studies, these novel calcium alginate/carbon nanofibers composites are promising as broad-spectrum antimicrobial biomaterials for the current COVID-19 pandemic.

Funder

Fundación Universidad Católica de Valencia San Vicente Mártir

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Hydrogel: Preparation, characterization, and applications: A review

2. Alginate Hydrogels as Biomaterials

3. Biopolymers from Renewable Resources;Kaplan,1998

4. A New Process for Extracting Alginates from Laminaria digitata: Reactive Extrusion

5. Biomaterials Science: An. Introduction to Materials in Medicine;Ratner,2012

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3