Author:
Jamkamon Kamonpong,Janmanee Pichai
Abstract
The performance of electrical discharge machining for drilling holes decreases with machining depth because the conventional flushing and electrode cannot completely eliminate debris particles from the machining area. In this study, a modified electrode for self-flushing in the electrical discharge machining process with a step cylindrical shape was designed to improve machining performance for deep hole drilling. The experimental results of the step cylindrical electrode showed that the material removal rate increased by approximately 215.7%, 203.8%, and 130.4%, and the electrode wear ratio decreased by approximately 47.2%, 63.1%, and 37.3%, when compared with a conventional electrode for the diameters of 6, 9, and 12 mm, respectively. In addition, the gap clearance and concavity of the side wall of the drilled hole was reduced with the step cylindrical electrode. The limited high flank of the electrode led to an increase in the escape area of the debris that was partially removed from the machining area, and the limited secondary spark on the side wall of the electrode resulted in a reduction in machining time.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献