Effects of Heat Treatment of Selective Laser Melting Printed Ti-6Al-4V Specimens on Surface Texture Parameters and Cell Attachment

Author:

Peng Pei-Wen,Yang Jen-ChangORCID,Lee Wei-Fang,Fang Chih-Yuan,Chang Chun-Ming,Chen I-Jan,Hsu Chengpo,Yang Tzu-Sen

Abstract

Selective laser melting (SLM) is extensively used for fabricating metallic biomedical products. After 3D printing, it is almost always advisable to apply a heat treatment to release the internal tensions or optimize the mechanical properties of the printed parts. The aim of this paper is to investigate the effects of heat treatment of SLM printed Ti-6Al-4V (Ti64) circular specimens on the areal surface texture parameters and cell attachment. Areal surface texture parameters, including the arithmetic mean height (Sa), root-mean-square height (Sq), skewness (Ssk), and kurtosis (Sku) were characterized. In addition, wavelet-based multi-resolution analysis was applied to investigate the characteristic length scales of untreated and heat-treated Ti64 specimens. In this study, the vertical distance between the highest and lowest position of cell attachment for each sampling area was defined as ΔH. Results showed that an increase in the periodic characteristic length scale was primarily due to the formation of large-scale aggregations of Ti64 metal powder particles on the heat-treated surface. In addition, MG-63 cells preferred lying in concave hollows; in heat-treated specimens, values of ΔH statistically significantly decreased from 31.6 ± 4.2 to 8.8 ± 2.8 μm, while Sku decreased from 3.3 ± 1.4 to 2.6 ± 0.6, indicating a strong influence of Sku on cell attachment.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3