Abstract
Among the micro-logistic transport systems, railway stations should be highlighted, such as one of the most important transport infrastructure elements. The efficiency of the transport industry as a whole depends on the quality of their operation. Such systems have a complex multi-level structure, and the incoming traffic flow often has a stochastic character. It is known that the most effective approach to study the operation of such systems is mathematical modeling. Earlier, we proposed an approach to transport hub modeling using multiphase queuing systems with a batch Markovian arrival process (BMAP) as an incoming flow. In this paper, we develop the method by applying more complex models based on queuing networks that allow us to describe in detail the route of requests within an object with a non-linear hierarchical structure. This allows us to increase the adequacy of modeling and explore a new class of objects—freight railway stations and marshalling yards. Here we present mathematical models of two railway stations, one of which is a freight railway station located in Russia, and the other is a marshalling yard in the USA. The models have the form of queuing networks with BMAP flow. They are implemented as simulation software, and a numerical experiment is carried out. Based on the numerical results, some “bottlenecks” in the structure of the studied stations are determined. Moreover, the risk of switching to an irregular mode of operation is assessed. The proposed method is suitable for describing a wide range of cargo and passenger transport systems, including river ports, seaports, airports, and multimodal transport hubs. It allows a primary analysis of the hub operation and does not need large statistical information for parametric identification.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference48 articles.
1. Introduction to Modern Traffic Flow Theory and Control
2. Railway Transportation Systems. Design, Construction and Operation;Pyrgidis,2016
3. Simulation Modelling and Analysis;Law,2000
4. Optimization Models for Rail Car Fleet Management;Milenkovic,2019
5. Models for Rearranging Train Cars;Stefano,2007
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献