Facial Paralysis Detection on Images Using Key Point Analysis

Author:

Parra-Dominguez Gemma S.ORCID,Sanchez-Yanez Raul E.ORCID,Garcia-Capulin Carlos H.ORCID

Abstract

The inability to move the muscles of the face on one or both sides is known as facial paralysis, which may affect the ability of the patient to speak, blink, swallow saliva, eat, or communicate through natural facial expressions. The well-being of the patient could also be negatively affected. Computer-based systems as a means to detect facial paralysis are important in the development of standardized tools for medical assessment, treatment, and monitoring; additionally, they are expected to provide user-friendly tools for patient monitoring at home. In this work, a methodology to detect facial paralysis in a face photograph is proposed. A system consisting of three modules—facial landmark extraction, facial measure computation, and facial paralysis classification—was designed. Our facial measures aim to identify asymmetry levels within the face elements using facial landmarks, and a binary classifier based on a multi-layer perceptron approach provides an output label. The Weka suite was selected to design the classifier and implement the learning algorithm. Tests on publicly available databases reveal outstanding classification results on images, showing that our methodology that was used to design a binary classifier can be expanded to other databases with great results, even if the participants do not execute similar facial expressions.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Facial Palsy Treatment through Artificial Intelligence: From Diagnosis to Recovery Monitoring;2024 16th International Conference on Human System Interaction (HSI);2024-07-08

2. Visual Facial Paralysis Detection using InceptionResNetV2;2024 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS);2024-06-29

3. Intelligent bell facial paralysis assessment: a facial recognition model using improved SSD network;Scientific Reports;2024-06-04

4. Facial expressions to identify post-stroke: A pilot study;Computer Methods and Programs in Biomedicine;2024-06

5. In-Domain Inversion for Improved 3D Face Alignment on Asymmetrical Expressions;2024 IEEE 18th International Conference on Automatic Face and Gesture Recognition (FG);2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3