Data Mining Techniques for Early Diagnosis of Diabetes: A Comparative Study

Author:

Chaves Luís,Marques GonçaloORCID

Abstract

Diabetes is a life-long condition that is well-known in the 21st century. Once known as a disease of the West, the rise of diabetes has been fed by a nutrition shift, rapid urbanization and increasingly sedentary lifestyles. In late 2019, a new public health concern was emerging (COVID-19), with a particular hazard concerning people living with diabetes. Medical institutes have been collecting data for years. We expect to achieve predictions for pathological complications, which hopefully will prevent the loss of lives and improve the quality of life using data mining processes. This work proposes a comparative study of data mining techniques for early diagnosis of diabetes. We use a publicly accessible data set containing 520 instances, each with 17 attributes. Naive Bayes, Neural Network, AdaBoost, k-Nearest Neighbors, Random Forest and Support Vector Machine methods have been tested. The results suggest that Neural Networks should be used for diabetes prediction. The proposed model presents an AUC of 98.3% and 98.1% accuracy, an F1-Score, Precision and Sensitivity of 98.4% and a Specificity of 97.5%.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3