Biomaterial-Modified Magnetic Nanoparticles γ-Fe2O3, Fe3O4 Used to Improve the Efficiency of Hyperthermia of Tumors in HepG2 Model

Author:

Zhao ShangORCID,Lee SeoksoonORCID

Abstract

The main treatments for cancer recorded to date include chemotherapy, radiotherapy, and surgery. Although we have achieved great success in treating certain types of tumors, there are still many incurable even with the help of modern treatments. Currently, the principles of magnetic-induction hyperthermia in magnetic nanoparticle hyperthermia are considered an effective treatment for cancer cells. As reported in previous articles, these nanoparticles generate a lot of heat that raises the temperatures of tumors, hence treating the cancer cells. The other significant potential of magnetic nanoparticles is the ability to combine heat and drug release for cancer treatment. However, within the biologically safe range of AC magnetic fields, the lack of induction heating power and the high criteria for biocompatibility in superparamagnetic-nanoparticle hyperthermia agents still make up the key challenges for the successful clinical application of magnetic hyperthermia. In this study, two different types of iron oxide nanoparticles (γ-Fe2O3, Fe3O4) were modified with whey protein isolate (WPI) to form bio-modified superparamagnetic nanoparticles with spherical or diamond-shaped structures and diameters between 20 and 100 nm, which demonstrate excellent stability under different conditions. Adriamycin (ADM) has also been successfully loaded onto these nanoparticles and used in this experiment. In vitro and in vivo experimental studies were performed using these WPI-modified nanoparticles on HepG2 tumor models and mice to assess their bioavailability and biological feasibility. The results prove that these WPI-modified nanoparticles perform satisfactorily in conjunction with hyperthermia to cure tumors completely.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3