Extending 3D-GIS District Models and BIM-Based Building Models into Computer Gaming Environment for Better Workflow of Cultural Heritage Conservation

Author:

Ma Yu-Pin

Abstract

Research on cultural heritage conservation has shifted from emphasizing the digital information process with the advantages of “precision” and “visualization” in the early stage to focusing on the development of “realistic” and “highly experiential” gamified interactive environments. As game technology provides a highly interactive experience, effective communication, and an integrated environment, it brings new application opportunities for the future development of the reconstruction of historical blocks and cultural spaces. This study takes the old city blocks and historic buildings in Taiwan as examples, applies ArcGIS and SketchUp as the information modeling software, uses the Unity3D game engine as the development platform, and carries out the integration and interactive presentation of the scene information model through the two-stage process of information modeling and programming integration. The historical building information model and 3D-GIS attribute data are integrated, and the visibility and interaction of the information model of the old city blocks are enhanced. Using game technology to optimize the digital integration process of cultural asset not only simplifies the integration of multiple information models and provides two-way updates, but also effectively enhances the interaction and display application capabilities of historic district and building space information. The development tasks that were completed in this research are (1) integrate historical building models and 3D-GIS attribute data; (2) get all the necessary visual information; (3) update historical buildings and historic district models and data at any time; (4) provide virtual reality simulation function and environmental interaction experience.

Funder

The Ministry of Science and Technology of Taiwan

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3