A Hybrid Approach Combining R*-Tree and k-d Trees to Improve Linked Open Data Query Performance

Author:

Sun Yuxiang,Zhao TianyiORCID,Yoon Seulgi,Lee YongjuORCID

Abstract

Semantic Web has recently gained traction with the use of Linked Open Data (LOD) on the Web. Although numerous state-of-the-art methodologies, standards, and technologies are applicable to the LOD cloud, many issues persist. Because the LOD cloud is based on graph-based resource description framework (RDF) triples and the SPARQL query language, we cannot directly adopt traditional techniques employed for database management systems or distributed computing systems. This paper addresses how the LOD cloud can be efficiently organized, retrieved, and evaluated. We propose a novel hybrid approach that combines the index and live exploration approaches for improved LOD join query performance. Using a two-step index structure combining a disk-based 3D R*-tree with the extended multidimensional histogram and flash memory-based k-d trees, we can efficiently discover interlinked data distributed across multiple resources. Because this method rapidly prunes numerous false hits, the performance of join query processing is remarkably improved. We also propose a hot-cold segment identification algorithm to identify regions of high interest. The proposed method is compared with existing popular methods on real RDF datasets. Results indicate that our method outperforms the existing methods because it can quickly obtain target results by reducing unnecessary data scanning and reduce the amount of main memory required to load filtering results.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3