Configurational Entropy for Optimizing the Encryption of Digital Elevation Model Based on Chaos System and Linear Prediction

Author:

Cheng Xinghua,Li ZhilinORCID

Abstract

A digital elevation model (DEM) digitally records information about terrain variations and has found many applications in different fields of geosciences. To protect such digital information, encryption is one technique. Numerous encryption algorithms have been developed and can be used for DEM. A good encryption algorithm should change both the compositional and configurational information of a DEM in the encryption process. However, current methods do not fully take into full consideration pixel structures when measuring the complexity of an encrypted DEM (e.g., using Shannon entropy and correlation). Therefore, this study first proposes that configurational entropy capturing both compositional and configurational information can be used to optimize encryption from the perspective of the Second Law of Thermodynamics. Subsequently, an encryption algorithm based on the integration of the chaos system and linear prediction is designed, where the one with the maximum absolute configurational entropy difference compared to the original DEM is selected. Two experimental DEMs are encrypted for 10 times. The experimental results and security analysis show that the proposed algorithm is effective and that configurational entropy can help optimize the encryption and can provide guidelines for evaluating the encrypted DEM.

Funder

Research Grants Council, University Grants Committee

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference39 articles.

1. Multimedia Content Encryption: Techniques and Applications;Lian,2008

2. Image and Video encryption: From Digital RIGHTS management to Secured Personal Communication;Uhl,2004

3. Communication Theory of Secrecy Systems*

4. A block cipher based on chaotic neural networks

5. Multi chaotic systems based pixel shuffle for image encryption

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3