A Novel Method in Predicting Hypertension Using Facial Images

Author:

Ang LinORCID,Yim Mi Hong,Do Jun-Hyeong,Lee SanghunORCID

Abstract

Hypertension has been a crucial public health challenge among adults. This study aimed to develop a novel method for non-contact prediction of hypertension using facial characteristics such as facial features and facial color. The data of 1099 subjects (376 men and 723 women) analyzed in this study were obtained from the Korean Constitutional Multicenter Study of Korean medicine Data Center (KDC) at the Korea Institute of Oriental Medicine (KIOM). Facial images were collected and facial variables were extracted using image processing techniques. Analysis of covariance (ANCOVA) and Least Absolute Shrinkage and Selection Operator (LASSO) were performed to compare and identify the facial characteristic variables between the hypertension group and normal group. We found that the most distinct facial feature differences between hypertension patients and normal individuals were facial shape and nose shape for men in addition to eye shape and nose shape for women. In terms of facial colors, cheek color in men, as well as forehead and nose color in women, were the most distinct facial colors between the hypertension groups and normal individuals. Looking at the AUC value, the prediction power for women is better than men. In conclusion, we managed to explore and identify the facial characteristics variables related to hypertension. This study may provide new evidence in the validity of predicting hypertension using facial characteristics.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3