Debris Flow Characteristics in Flume Experiments Considering Berm Installation

Author:

Chang Hyungjoon,Ryou KukhyunORCID,Lee HojinORCID

Abstract

This study was conducted to identify the characteristics and mobility of debris flows and analyze the performance of a berm as a debris flow mitigation measure. The debris flow velocity, flow depth, Froude number, flow resistance coefficients, and mobility ratio were accordingly determined using the results of flume tests. To analyze the influence of the berm, the results for a straight channel test without a berm were compared with those for a single-berm channel test. The debris flow velocity was observed to increase with increasing channel slope and decreasing volumetric concentration of sediment, whereas the mobility ratio was observed to increase with increasing channel slope and volumetric concentration of sediment. In addition, it was confirmed that the installation of a berm significantly decreased the debris flow velocity and mobility ratio. This indicates that a berm is an effective method for reducing damage to areas downstream of a debris flow by decreasing its potential mobility. By identifying the effects of berms on debris flow characteristics according to the channel slope and volumetric concentration of sediment, this study supports the development of berms to serve as debris flow damage mitigation measures.

Funder

The Ministry of Land, Infrastructure and Transport of the Korean government

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3