Intra Prediction-Based Hologram Phase Component Coding Using Modified Phase Unwrapping

Author:

Kim Jin-KyumORCID,Oh Kwan-JungORCID,Kim Jin-WoongORCID,Kim Dong-WookORCID,Seo Young-HoORCID

Abstract

In this paper, we propose a method for compressing the phase component of a full-complex hologram. The JPEG (Joint Photographic Experts Group) Pleno is undergoing standardization for compressing full-complex holograms. If the full-complex hologram is compressed in the form of amplitude and phase components, the three-dimensional information of the hologram may be better preserved. Therefore, in order to solve the disadvantages of the method of independently compressing real and imaginary parts, we propose a method for directly compressing phase information. We select the HEVC (High Efficiency Video Coding), which has the best performance in compressing holograms from previous studies, as the anchor codec, and propose an algorithm for converting the phase information into the form suitable for the HEVC. Since the phase component is very random, we propose a modified phase unwrapping technique to improve this. In addition, in order to make good use of the property of HEVC Intra coding, the phase unwrapping considering Intra prediction is applied, and the most suitable HEVC Intra coding condition is searched. Compared with the result of compressing the phase using the HEVC, the hologram was improved by 2 dB or more and the reconstruction result was improved by more than 4 dB at a compression ratio of 80:1. If the compression ratio is increased, the proposed method has better results.

Funder

Ministry of Science and ICT, South Korea

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference22 articles.

1. A New Microscopic Principle

2. Basics of Holography;Hariharan,2002

3. Recent advances in digital holography [Invited]

4. JPEG Plenohttps://jpeg.org/jpegpleno/

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3