Sulfuric Acid Resistance of CNT-Cementitious Composites

Author:

Lee Gun-Cheol,Kim Youngmin,Seo Soo-YeonORCID,Yun Hyun-DoORCID,Hong Seongwon

Abstract

This study analyzed changes in the durability characteristics of cement mortar incorporating carbon nanotube (CNT) and the electrical properties subjected to deterioration induced by sulfate attack. Powder types of multi-walled or single-walled CNTs were used and added to the composites with 1.0% and 2.0% mass fraction, and the specimens were immersed in 5% and 10% sulfuric acid solutions to investigate the durability of CNT cementitious composites. Although mechanical performance decreased due to relatively large pores (370–80 μm) caused by CNTs, specimens incorporating CNTs exhibited enhanced resistance to sulfuric acid as CNTs, which offered strong resistance to acid corrosion, and prevented contact between the cement hydrate and the sulfuric acid solution. Therefore, it is expected that self-sensing performance was exhibited because there were no significant differences in the electrical properties of cement mortar subjected to the deterioration by sulfate attack.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3