Application of Vibration Signal Processing Methods to Detect and Diagnose Wheel Flats in Railway Vehicles

Author:

Shim JaeSeokORCID,Kim GeoYoung,Cho ByungJin,Koo JeongSeo

Abstract

This paper studied two useful vibration signal processing methods for detection and diagnosis of wheel flats. First, the cepstrum analysis method combined with order analysis was applied to the vibration signal to detect periodic responses in the spectrum for a rotating body such as a wheel. In the case of railway vehicles, changes in speed occur while driving. Thus, it is difficult to effectively evaluate the flat signal of the wheel because the time cycle of the flat signal changes frequently. Thus, the order analysis was combined with the existing cepstrum analysis method to consider the changes in train speed. The order analysis changes the domain of the vibration signal from time domain to rotating angular domain to consider the train speed change in the cepstrum analysis. Second, the cross correlation analysis method combined with the order analysis was applied to evaluate the flat signal from the vibration signal well containing the severe field noise produced by the vibrations of the rail irregularities and bogie components. Unlike the cepstrum analysis method, it can find out the wheel flat size because the flat signal linearly increases to the wheel flat. Thus, it is more effective when checking the size of the wheel flat. Finally, the data tested in the Korea Railroad Research Institute were used to confirm that the cepstrum analysis and cross correlation analysis methods are appropriate for not only simulation but also test data.

Funder

Seoul National University of Science and Technology

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3