Comparing Ensemble-Based Machine Learning Classifiers Developed for Distinguishing Hypokinetic Dysarthria from Presbyphonia

Author:

Byeon HaewonORCID

Abstract

It is essential to understand the voice characteristics in the normal aging process to accurately distinguish presbyphonia from neurological voice disorders. This study developed the best ensemble-based machine learning classifier that could distinguish hypokinetic dysarthria from presbyphonia using classification and regression tree (CART), random forest, gradient boosting algorithm (GBM), and XGBoost and compared the prediction performance of models. The subjects of this study were 76 elderly patients diagnosed with hypokinetic dysarthria and 174 patients with presbyopia. This study developed prediction models for distinguishing hypokinetic dysarthria from presbyphonia by using CART, GBM, XGBoost, and random forest and compared the accuracy, sensitivity, and specificity of the development models to identify the prediction performance of them. The results of this study showed that random forest had the best prediction performance when it was tested with the test dataset (accuracy = 0.83, sensitivity = 0.90, and specificity = 0.80, and area under the curve (AUC) = 0.85). The main predictors for detecting hypokinetic dysarthria were Cepstral peak prominence (CPP), jitter, shimmer, L/H ratio, L/H ratio_SD, CPP max (dB), CPP min (dB), and CPPF0 in the order of magnitude. Among them, CPP was the most important predictor for identifying hypokinetic dysarthria.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3