Abstract
It is essential to understand the voice characteristics in the normal aging process to accurately distinguish presbyphonia from neurological voice disorders. This study developed the best ensemble-based machine learning classifier that could distinguish hypokinetic dysarthria from presbyphonia using classification and regression tree (CART), random forest, gradient boosting algorithm (GBM), and XGBoost and compared the prediction performance of models. The subjects of this study were 76 elderly patients diagnosed with hypokinetic dysarthria and 174 patients with presbyopia. This study developed prediction models for distinguishing hypokinetic dysarthria from presbyphonia by using CART, GBM, XGBoost, and random forest and compared the accuracy, sensitivity, and specificity of the development models to identify the prediction performance of them. The results of this study showed that random forest had the best prediction performance when it was tested with the test dataset (accuracy = 0.83, sensitivity = 0.90, and specificity = 0.80, and area under the curve (AUC) = 0.85). The main predictors for detecting hypokinetic dysarthria were Cepstral peak prominence (CPP), jitter, shimmer, L/H ratio, L/H ratio_SD, CPP max (dB), CPP min (dB), and CPPF0 in the order of magnitude. Among them, CPP was the most important predictor for identifying hypokinetic dysarthria.
Funder
National Research Foundation of Korea
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献