Effect of Shrinking and No Shrinking Dentine and Enamel Replacing Materials in Posterior Restoration: A 3D-FEA Study

Author:

Ausiello Pietro,Dal Piva Amanda Maria de OliveiraORCID,Borges Alexandre Luiz SoutoORCID,Lanzotti AntonioORCID,Zamparini FaustoORCID,Epifania EttoreORCID,Mendes Tribst João PauloORCID

Abstract

The aim of the present study was to investigate the effect of shrinking and no shrinking dental filling materials combination in posterior restorations under the combined effects of polymerization shrinkage and occlusal load by means of 3D Finite Elements Analysis. Six computer-generated and restored class I or class II cavities models of a lower molar were designed in the CAD software and evaluated according to the cavity and restorative procedure. Different shrinking and no shrinking adhesive materials combination with diverse Young’s modulus were considered. A food bolus was modeled on the occlusal surface replicating the chewing load using static linear analyses Polymerization shrinkage was simulated for the shrinking different restorative materials. The maximum principal stress was selected as analysis criteria. All models exhibited higher stresses along the dentine restoration interfaces with different magnitude and a similar stress trend along enamel restoration interface. Stress values up to 22 MPa and 19 MPa were recorded in the enamel and restoration, respectively. The use of elastic not shrinking material layer in combination with bulk fill composite reduced the stress magnitude in dentine and enamel to replace dental tissues. Class I and class II posterior cavities adhesively restored with shrinking filling material’s combination showed the most unfavorable stress concentrations and the multilayer technique is a promising restorative alternative in posterior adhesive restorations when deep dentin and enamel volumes are missing.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3