Uncertainties in the Seismic Assessment of Historical Masonry Buildings

Author:

Tomić Igor,Vanin Francesco,Beyer KatrinORCID

Abstract

Seismic assessments of historical masonry buildings are affected by several sources of epistemic uncertainty. These are mainly the material and the modelling parameters and the displacement capacity of the elements. Additional sources of uncertainty lie in the non-linear connections, such as wall-to-wall and floor-to-wall connections. Latin Hypercube Sampling was performed to create 400 sets of 11 material and modelling parameters. The proposed approach is applied to historical stone masonry buildings with timber floors, which are modelled by an equivalent frame approach using a newly developed macroelement accounting for both in-plane and out-of-plane failure. Each building is modelled first with out-of-plane behaviour enabled and non-linear connections, and then with out-of-plane behaviour disabled and rigid connections. For each model and set of parameters, incremental dynamic analyses are performed until building failure and seismic fragility curves derived. The key material and modelling parameters influencing the performance of the buildings are determined based on the peak ground acceleration at failure, type of failure and failure location. This study finds that the predicted PGA at failure and the failure mode and location is as sensitive to the properties of the non-linear connections as to the material and displacement capacity parameters, indicating that analyses must account for this uncertainty to accurately assess the in-plane and out-of-plane failure modes of historical masonry buildings. It also shows that modelling the out-of-plane behaviour produces a significant impact on the seismic fragility curves.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3