Antimicrobial Cocktail Combining Specific Peptide Extracts from Native Probiotic Bacteria Hamper Adulteration of Ready-to-Eat Mango Wedges

Author:

Tenea Gabriela N.ORCID,Olmedo Daniela

Abstract

Consumption of ready-to-eat chopped fruits sold in the streets is a concern, as such activities are outside the regulation and protection in most developing countries. Ready-to-eat mangos are commonly sold as wedges in plastic cups at ambient temperature by mobile vendors in Ecuador, thus they are prone to contamination by bacteria, which poses a safety issue of concern. This work aimed to evaluate the effect of several antimicrobial cocktails consisting of previously designed specific peptide extract combinations from two probiotic bacteria Lactobacillus plantarum UTNCys5-4 and Lactococcus lactis subsp. lactis UTNGt28, along with nisin, a commercial food additive, on mango wedges artificially inoculated with a logarithmic phase culture of a five-strain bacterial mixture (FSBM). Preliminary bacteriological analysis of mango wedges purchased from mobile vendors showed the presence of multiple antibiotic-resistant isolates such E. coli spp., Enterobacter spp., Shigella spp., Salmonella spp., along with yeasts and molds, indicating non-compliance with the food safety standards. The results revealed that two antimicrobial cocktails, T2 and T5, containing cell-free supernatant based (CFS) and precipitated peptides (PP) based cocktails from UTNCys5-4 and UTNGt28 strains applied at dose 1:3 (v/v), were the most efficient combinations that inhibited the colonization of total bacterial counts with 56.03% and 55.61% in mango wedges stored with refrigeration. The reduction of total E. coli counts was 64.93%, while Salmonella and Shigella counts were reduced by 98.09% and 97.93%, respectively, when mango wedges were treated with T5-cocktail. The commercial nisin inhibited total Salmonella spp. counts by 40.13%, while E. coli spp. and Shigella spp. diminished by 28.20% and 37.22%, respectively. Moreover, we showed that T5 but not T7 (nisin) damaged the target cell integrity, thereby eventually inhibiting their growth and reproduction. The selected antimicrobial cocktails exerted a bacteriolytic effect by killing the FSBM simultaneously in a fruit matrix and preventing their accumulation in mango wedges. Furthermore, there is a possibility of using peptide combinatorial treatments to combat drug-resistant bacteria in ready-to-eat fruits.

Funder

Centre or Research (CUICYT) of the Technical University of the North

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference53 articles.

1. Mango de azúcar (Mangifera indica), variedad de Colombia: características antioxidantes, nutricionales y sensoriales

2. La produccion del mango ecuatoriano;Guererro;Perspectiva,2018

3. Diseño de un plan de marketing para la exportación del mango ecuatoriano hacia el mercado español;Arequipa;Bibdigital,2010

4. Análisis de las políticas públicas agrícolas y la seguridad alimentaria de la provincia de Los Ríos

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3