Emulating Cued Recall of Abstract Concepts via Regulated Activation Networks

Author:

Sharma RahulORCID,Ribeiro Bernardete,Pinto Alexandre Miguel,Cardoso AmílcarORCID

Abstract

Abstract concepts play a vital role in decision-making or recall operations because the associations among them are essential for contextual processing. Abstract concepts are complex and difficult to represent (conceptually, formally, or computationally), leading to difficulties in their comprehension and recall. This contribution reports the computational simulation of the cued recall of abstract concepts by exploiting their learned associations. The cued recall operation is realized via a novel geometric back-propagation algorithm that emulates the recall of abstract concepts learned through regulated activation network (RAN) modeling. During recall operation, another algorithm uniquely regulates the activation of concepts (nodes) by injecting excitatory, neutral, and inhibitory signals to other concepts of the same level. A Toy-data problem is considered to illustrate the RAN modeling and recall procedure. The results display how regulation enables contextual awareness among abstract nodes during the recall process. The MNIST dataset is used to show how recall operations retrieve intuitive and non-intuitive blends of abstract nodes. We show that every recall process converges to an optimal image. With more cues, better images are recalled, and every intermediate image obtained during the recall iterations corresponds to the varying cognitive states of the recognition procedure.

Funder

Fundação para a Ciência e a Tecnologia

H2020 Future and Emerging Technologies

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3