Portable System for Box Volume Measurement Based on Line-Structured Light Vision and Deep Learning

Author:

Peng Tao,Zhang Zhijiang,Song Yingjie,Chen Fansheng,Zeng Dan

Abstract

Portable box volume measurement has always been a popular issue in the intelligent logistic industry. This work presents a portable system for box volume measurement that is based on line-structured light vision and deep learning. This system consists of a novel 2 × 2 laser line grid projector, a sensor, and software modules, with which only two laser-modulated images of boxes are required for volume measurement. For laser-modulated images, a novel end-to-end deep learning model is proposed by using an improved holistically nested edge detection network to extract edges. Furthermore, an automatic one-step calibration method for the line-structured light projector is designed for fast calibration. The experimental results show that the measuring range of our proposed system is 100–1800 mm, with errors less than ±5.0 mm. Theoretical analysis indicates that within the measuring range of the system, the measurement uncertainty of the measuring device is ±0.52 mm to ±4.0 mm, which is consistent with the experimental results. The device size is 140 mm × 35 mm × 35 mm and the weight is 110 g, thus the system is suitable for portable automatic box volume measurement.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Precision Calibration of a Monocular-Vision-Guided Handheld Line-Structured-Light Measurement System;Sensors;2023-07-17

2. 基于三维点云处理的交联聚乙烯电缆接头反应力锥参数测量算法;Chinese Journal of Lasers;2023

3. A Real-time Object Volume Measurement Method Based on Line Laser Scanning;2022 41st Chinese Control Conference (CCC);2022-07-25

4. 3D Measurement Using a Single Image for Smart Manufacturing of Microscopic Products in a Ceramic Powder Pressing Process;International Journal of Precision Engineering and Manufacturing-Green Technology;2022-05-06

5. Volume measurement of oil palm fresh fruit bunches using computer vision;THE 3RD INTERNATIONAL CONFERENCE ON PHYSICAL INSTRUMENTATION AND ADVANCED MATERIALS (ICPIAM) 2021;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3