The Role of DEM Resolution and Evapotranspiration Assessment in Modeling Groundwater Resources Estimation: A Case Study in Sicily

Author:

Borzì IolandaORCID,Bonaccorso BrunellaORCID,Aronica Giuseppe TitoORCID

Abstract

The reliability of hydrological response simulated by distributed hydrological models in river basins with complex topographies strictly relies on the adopted digital elevation model (DEM) resolution. Furthermore, when the objective is to investigate hydrologic processes over a longer period, including both wet and dry conditions, the choice of a proper model for estimating actual evapotranspiration can play a key role in water resources assessment. When dealing with groundwater-fed catchment, these aspects directly reflect on water balance simulations and consequentially on groundwater resource quantification, which is fundamental for effective water resources planning and management at the river basin scale. In the present study, a DEM-based inverse hydrogeological balance method is applied to estimate the active mean annual recharge of the northern Etna groundwater system within the upstream part of the Alcantara river basin in Sicily region (Italy). Despite this area representing a biodiversity hot-spot, as well as the main water source for a population of about 35,000 inhabitants, so far little attention has been paid to groundwater estimation, mainly due to lack of data. In this context, this work aims to improve knowledge on groundwater recharge at the annual scale in this case-study area. In particular, the main objectives of this study are: (1) to quantify the influence of the DEM resolution on groundwater resource estimation and (2) to investigate the influence of the method used for evapotranspiration assessment on the model’s results. More specifically, groundwater and surface flows are evaluated by considering different DEM resolutions (i.e., 20, 60, 100, 300, 500 m) and three different theoretical approaches for evapotranspiration calculation (i.e., the Turc method, a modified-Turc method, and the Budyko model).

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference61 articles.

1. Les Eaux Souterraines;Shoeller,1962

2. Groundwater recharge;Lerner,1990

3. Practical Hydroinformatics

4. Recharge and groundwater models: an overview

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3