Multiple Performance Optimization for Microstrip Patch Antenna Improvement

Author:

Chen Ja-Hao1,Cheng Chen-Yang2,Chien Chuan-Min2,Yuangyai Chumpol3,Chen Ting-Hua2,Chen Shuo-Tsung4

Affiliation:

1. Department of Communication Engineering, Feng Chia University, Taichung 40724, Taiwan

2. Department of Industrial Engineering and Management, National Taipei University of Technology, Taipei 10608, Taiwan

3. Department of Industrial Engineering, School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

4. Department of Applied Mathematics, Tunghai University, Taichung 407, Taiwan

Abstract

As the Internet of Things (IOT) becomes more widely used in our everyday lives, an increasing number of wireless communication devices are required, meaning that an increasing number of signals are transmitted and received through antennas. Thus, the performance of antennas plays an important role in IOT applications, and increasing the efficiency of antenna design has become a crucial topic. Antenna designers have often optimized antennas by using an EM simulation tool. Although this method is feasible, a great deal of time is often spent on designing the antenna. To improve the efficiency of antenna optimization, this paper proposes a design of experiments (DOE) method for antenna optimization. The antenna length and area in each direction were the experimental parameters, and the response variables were antenna gain and return loss. Response surface methodology was used to obtain optimal parameters for the layout of the antenna. Finally, we utilized antenna simulation software to verify the optimal parameters for antenna optimization, showing how the DOE method can increase the efficiency of antenna optimization. The antenna optimized by DOE was implemented, and its measured results show that the antenna gain and return loss were 2.65 dBi and 11.2 dB, respectively.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3