Development of a Stable Oxygen Sensor Using a 761 nm DFB Laser and Multi-Pass Absorption Spectroscopy for Field Measurements

Author:

Chang Jvqiang1,He Qixin1,Li Mengxin1

Affiliation:

1. MoE Key Lab of Luminescence and Optical Information, Beijing Jiaotong University, No. 3 Shangyuancun, Beijing 100044, China

Abstract

An optical sensor system based on wavelength modulation spectroscopy (WMS) was developed for atmospheric oxygen (O2) detection. A distributed feedback (DFB) laser with butterfly packaging was used to target the O2 absorption line at 760.89 nm. A compact multi-pass gas cell was employed to increase the effective absorption length to 3.3 m. To ensure the stability and anti-interference capability of the sensor in field measurements, the optical module was fabricated with isolation of ambient light and vibration design. A 1f normalized 2f WMS (WMS-2f/1f) technique was adopted to reduce the effect of laser power drift. In addition, a LabVIEW-based dual-channel lock-in amplifier was developed for harmonic detection, which significantly reduced the sensor volume and cost. The detailed detection principle was described, and a theoretical model was established to verify the effectiveness of the technique. Experiments were carried out to obtain the device’s sensing performances. An Allan deviation analysis yielded a minimum detection limit of 0.054% for 1 s integration time that can be further improved to 0.009% at ~60 s. Finally, the reliability and anti-interference capability of the sensor system were verified by the atmospheric O2 monitoring.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference30 articles.

1. (2013). Occupational Safety and Health Standards. Standard No. 1910.146.

2. Exposure of unsuspecting workers to deadly atmospheres in below-ground confined spaces and investigation of related whole-air sample composition using adsorption gas chromatography;Smith;J. Occup. Environ. Hyg.,2014

3. Multi-point optical fibre oxygen sensor based on laser absorption spectroscopy;Wei;Optik,2015

4. Low temperature operation of thin-film limiting-current type oxygen sensor using graded-composition layer electrodes;Inaba;Photoacoustics,2008

5. Fabrication and characterization of micro dissolved oxygen sensor activated on demand using electrolysis;Lee;Sens. Actuators B Chem.,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3