Affiliation:
1. Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
2. Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
Abstract
The flowrate measurement of the gas–liquid two-phase flow frequently observed in industrial equipment, such as in heat exchangers and reactors, is critical to enable the precise monitoring and operation of the equipment. Furthermore, certain applications, such as oil and natural gas processing plants, require the accurate measurements of the flowrates of each phase simultaneously. This study presents a method that can simultaneously measure the volumetric flowrates of each phase of gas and liquid two-phase mixtures, Qg and Ql, respectively, without separating the phases. The method employs a turbine flowmeter and two pressure sensors connected to the pipes upstream and downstream of the turbine flowmeter. By measuring the rotational speed of the rotor and the pressure loss across the flowmeter, the flowrate of the two-phase mixtures Qtp = (Qg + Ql) and the gas volumetric flowrate ratio β = (Qg/Qtp) are determined. The values of Qg and Ql are calculated as βQtp and (1 − β)Qtp. This study also investigates the measurement accuracies for air–water two-phase flows at 0.67 × 10−3 ≤ Qtp ≤ 1.67 × 10−3 m3/s and β ≤ 0.1, concluding that the full-scale accuracies of Qtp, β, Qg, and Ql are 3.1%, 4.8%, 3.9%, and 3%, respectively. These accuracies either match or improve the accuracies of similar methods reported in the literature, indicating that the proposed method is a viable solution for the determination of phase-specific flowrates in gas–liquid two-phase mixtures.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献