Searching and Tracking an Unknown Number of Targets: A Learning-Based Method Enhanced with Maps Merging

Author:

Yan PengORCID,Jia Tao,Bai Chengchao

Abstract

Unmanned aerial vehicles (UAVs) have been widely used in search and rescue (SAR) missions due to their high flexibility. A key problem in SAR missions is to search and track moving targets in an area of interest. In this paper, we focus on the problem of Cooperative Multi-UAV Observation of Multiple Moving Targets (CMUOMMT). In contrast to the existing literature, we not only optimize the average observation rate of the discovered targets, but we also emphasize the fairness of the observation of the discovered targets and the continuous exploration of the undiscovered targets, under the assumption that the total number of targets is unknown. To achieve this objective, a deep reinforcement learning (DRL)-based method is proposed under the Partially Observable Markov Decision Process (POMDP) framework, where each UAV maintains four observation history maps, and maps from different UAVs within a communication range can be merged to enhance UAVs’ awareness of the environment. A deep convolutional neural network (CNN) is used to process the merged maps and generate the control commands to UAVs. The simulation results show that our policy can enable UAVs to balance between giving the discovered targets a fair observation and exploring the search region compared with other methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3