Affiliation:
1. School of Computer and Electrical Engineering, Hunan University of Arts and Science, Changde 415000, China
2. Key Laboratory of Hunan Province for Control Technology of Distributed Electric Propulsion Air Vehicle, Changde 415000, China
Abstract
Multiple demand responses and electric vehicles are considered, and a micro-grid day-ahead dispatch optimization model with photovoltaic is constructed based on stochastic optimization theory. Firstly, an interruptible load model based on incentive-based demand response is introduced, and a demand response mechanism for air conditioning load is constructed to implement an optimal energy consumption curve control strategy for air conditioning units. Secondly, considering the travel demand and charging/discharging rules of electric vehicles, the electric vehicle optimization model is built. Further, a stochastic optimization model of micro-grid with demand response and electric vehicles is developed because of the uncertainty of photovoltaic power output. Finally, the simulation example verifies the effectiveness of the proposed model. The simulation results show that the proposed model can effectively tackle the uncertainty of photovoltaic, as well as reduce the operating cost of micro-grid. Therefore, the effective interaction between users and electric vehicles can be realized.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Hunan enterprise science and Technology Commissioner program
science and technology innovation program of Hunan Province
Research Foundation of Education Bureau of Hunan Province, China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献