Tolerance-Based Demand-Side Management for Load Shifting in Rural Areas of Southern Brazil

Author:

Eichkoff Henrique1ORCID,Bernardon Daniel1ORCID,Bitencourt Julio1,Garcia Vinícius1ORCID,Silva Daiana2,Chiara Lucas2,Butto Sebastian3,Barbosa Solange3ORCID,Pose Alejandre3

Affiliation:

1. Center of Excellence in Energy and Power Systems, Federal University of Santa Maria, Avenida Roraima, 1000, Santa Maria 97105-340, Brazil

2. Companhia Paulista de Força e Luz Power Utility (CPFL Energia), Rodovia Engenheiro Miguel Noel Nascentes Burnier, 1755, Campinas 13088-900, Brazil

3. Siglasul Regulatory Consulting, Rua México, 51, Rio de Janeiro 20031-144, Brazil

Abstract

In the rural regions of southern Brazil, electricity is largely directed to irrigation activities on rice crops at restricted periods of the year. Typically, customers in these regions are called “irrigators”, and have some characteristics different from loads in urban centers, such as high demand levels and sharp load variations. These characteristics can result in problems of excessive loading on distribution grids at certain times of the day, generating concerns for the power utilities in relation to the security of the electrical system, energy supply to customers, and the integrity of electrical equipment. An alternative to avoid or mitigate these possible problems may be the application of a demand management model to irrigator customers. In this context, a load shifting strategy can be inserted to reduce demand in more critical periods and move it to intervals with lower load on the power grid. In this context, this article presents a demand-side management methodology in distribution systems located in rural areas, employing the load shifting strategy for irrigator customers. The methodology proposed in this paper is not an entirely novel approach, but one specifically developed for the context of irrigator customers, a subject little studied in the literature. The load management model proposed by this study is segmented into three hierarchical levels. The first level is the identification of the electrical characteristics of the distribution systems, the second level is the power flow analysis of the distribution networks, and the third and last level consists in the application of load shifting to the irrigator customers of these electrical systems. The load shifting strategy is modeled by a linear programming algorithm and is only applied to irrigator customers in situations of excessive loading on power grid. The case studies were conducted on three distribution systems of a power utility, with more than 150 irrigator customers. The DSM model based on the load shifting strategy reduced the maximum demand and daily load variations on the three rural feeders evaluated. The proposed changes in load patterns can ensure the continuity of electric power supply service in future even with the high concentration of load on distribution networks, benefiting customers and power utilities.

Funder

CPFL Energia

ANEEL RD Program

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3