Enhanced Gas Production from Class II Gas Hydrate Reservoirs by the Multistage Fractured Horizontal Well

Author:

Sun Wei1,Li Guiwang2,Qin Huating3,Li Shuxia1,Xu Jianchun14

Affiliation:

1. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China

2. Tianjin Branch of CNOOC Ltd., Tianjin 300459, China

3. Shenzhen Branch of CNOOC Ltd., Shenzhen 518000, China

4. Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China

Abstract

In the two test productions that have been conducted in the hydrate reservoir test development zone in the South China Sea, the gas production capacity of single wells is low and the exploitation difficulty with the cost is too high for commercial demand economically. The low permeability of the hydrate-bearing layer (HBL) acts as the major barrier for pressure propagation during depressurization. Hydraulic fracturing by the combined depressurization is considered a promising hydrate production enhancement technology that can effectively improve the seepage state in the reservoir. In this study, to evaluate the effectiveness of the development methods association with fracturing, we established an idealized Class II hydrate reservoir and studied it using a multi-stage fractured horizontal well to assist in depressurization extraction. In order to evaluate the production enhancement effect of this method, we compared the gas production results of four methods, including single vertical well, vertical fractured well, horizontal well, and multistage fractured horizontal well through numerical simulation. In order to investigate the influence of key fracture parameters on the production enhancement effect, a sensitivity analysis of the production effect of Class II hydrate reservoirs with different fracture spacing, number of fractures, fracture conductivity, and fracture length was conducted, and the results were analyzed in terms of gas production and water production behavior curves as well as physical field evolution over time. The simulation results show that the multi-stage fractured horizontal wells have the best production increase in the comparison of well types. In the analysis of fracture parameters, it can be found that the selection of proper fracture spacing and dimensionless fracture conductivity can lead to a significant increase in gas production.

Funder

Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3