Position Servo Control of Electromotive Valve Driven by Centralized Winding LATM Using a Kalman Filter Based Load Observer

Author:

Yang Yi1,Cheng Xin12ORCID,Zhou Rougang345

Affiliation:

1. School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China

2. School of Mechanical & Electronic Engineering, Wuhan University of Technology, Wuhan 430070, China

3. School of Mechanical Engineering, Hangzhou Dianzi University, Hangzhou 310018, China

4. Wenzhou Institute of Hangzhou Dianzi University, Wenzhou 325013, China

5. Mstar Technologies, Inc., Hangzhou 310012, China

Abstract

The exhaust gas recirculation (EGR) valve plays an important role in improving engine fuel economy and reducing emissions. In order to improve the positioning accuracy and robustness of the EGR valve under uncertain dynamics and external disturbances, this paper proposes a positioning servo system design for an electromotive (EM) EGR valve based on the Kalman filter. Taking a novel valve driven by a central winding limited angle torque motor (LATM) as the object, we have fully considered the influence of the motor rotor position and load current, as well as the magnetic field saturation and cogging effect, improved the existing LTAM model, and derived accurate torque expression. The parameter uncertainty of the above internal model and the external stochastic disturbance were unified as “total disturbance”, and a Kalman filter-based observer was designed for disturbance estimations and real-time feed-forward compensation. Furthermore, using non-contact magnetic angle measurements to obtain accurate valve position information, a position control model with real-time response and high accuracy was established. Numerous simulated and experimental data show that in the presence of ± 25% plant model parameter fluctuations and random shock-type disturbances, the servo system scheme proposed in this paper achieves a maximum position deviation of 0.3 mm, a repeatability of positioning accuracy after disturbances of 0.01 mm, and a disturbance recovery time of not more than 250 ms. In addition, the above performance is insensitive to the duration of the disturbance, which demonstrates the strong robustness, high accuracy, and excellent dynamic response capability of the proposed design.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3