LightGBM-, SHAP-, and Correlation-Matrix-Heatmap-Based Approaches for Analyzing Household Energy Data: Towards Electricity Self-Sufficient Houses

Author:

Singh Nitin Kumar12ORCID,Nagahara Masaaki2ORCID

Affiliation:

1. Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu Campus, Kitakyushu 808-0196, Japan

2. Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi Hiroshima City 739-8527, Japan

Abstract

The rapidly growing global energy demand, environmental concerns, and the urgent need to reduce carbon footprints have made sustainable household energy consumption a critical priority. This study aims to analyze household energy data to predict the electricity self-sufficiency rate of households and extract meaningful insights that can enhance it. For this purpose, we use LightGBM (Light Gradient Boosting Machine)-, SHAP (SHapley Additive exPlanations)-, and correlation-heatmap-based approaches to analyze 12 months of energy and questionnaire survey data collected from over 200 smart houses in Kitakyushu, Japan. First, we use LightGBM to predict the ESSR of households and identify the key features that impact the prediction model. By using LightGBM, we demonstrated that the key features are the housing type, average monthly electricity bill, presence of floor heating system, average monthly gas bill, electricity tariff plan, electrical capacity, number of TVs, cooking equipment used, number of washing and drying machines, and the frequency of viewing home energy management systems (HEMSs). Furthermore, we adopted the LightGBM classifier with ℓ1 regularization to extract the most significant features and established a statistical correlation between these features and the electricity self-sufficiency rate. This LightGBM-based model can also predict the electricity self-sufficiency rate of households that did not participate in the questionnaire survey. The LightGBM-based model offers a global view of feature importance but lacks detailed explanations for individual predictions. For this purpose, we used SHAP analysis to identify the impact-wise order of key features that influence the electricity self-sufficiency rate (ESSR) and evaluated the contribution of each feature to the model’s predictions. A heatmap is also used to analyze the correlation among household variables and the ESSR. To evaluate the performance of the classification model, we used a confusion matrix showing a good F1 score (Weighted Avg) of 0.90. The findings discussed in this article offer valuable insights for energy policymakers to achieve the objective of developing energy-self-sufficient houses.

Funder

JSPS KAKENHI

Japanese Ministry of Environment

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3