A Comparative Study of the Hydrogen Auto-Ignition Process in Oxygen–Nitrogen and Oxygen–Water Vapor Oxidizer: Numerical Investigations in Mixture Fraction Space and 3D Forced Homogeneous Isotropic Turbulent Flow Field

Author:

Caban Lena1ORCID,Tyliszczak Artur1ORCID

Affiliation:

1. Faculty of Mechanical Engineering, Czestochowa University of Technology, Armii Krajowej 21, 42-201 Czestochowa, Poland

Abstract

In this paper, we analyze the auto-ignition process of hydrogen in a hot oxidizer stream composed of oxygen–nitrogen and oxygen–water vapor with nitrogen/water vapor mass fractions in a range of 0.1–0.9. The temperature of the oxidizer varies from 1100 K to 1500 K and the temperature of hydrogen is assumed to be 300 K. The research is performed in 1D mixture fraction space and in a forced homogeneous isotropic turbulent (HIT) flow field. In the latter case, the Large Eddy Simulation (LES) method combined with the Eulerian Stochastic Field (ESF) combustion model is applied. The results obtained in mixture fraction space aim to determine the most reactive mixture fraction, maximum flame temperature, and dependence on the scalar dissipation rate. Among others, we found that the ignition in H2-O2-H2O mixtures occurs later than in H2-O2-N2 mixtures, especially at low oxidizer temperatures. On the other hand, for a high oxidizer temperature, the ignitability of H2-O2-H2O mixtures is extended, i.e., the ignition occurs for a larger content of H2O and takes place faster. The 3D LES-ESF results show that the ignition time is virtually independent of initial conditions, e.g., randomness of an initial flow field and turbulence intensity. The latter parameter, however, strongly affects the flame evolution. It is shown that the presence of water vapor decreases ignitability and makes flames more prone to extinction.

Funder

Polish National Science Center

Department of Thermal Machinery

Publisher

MDPI AG

Reference96 articles.

1. Water addition to practical combustion systems—Concepts and applications;Dryer;Symp. (Int.) Combust.,1977

2. Levinsky, H. (2021). Why can’t we just burn hydrogen? Challenges when changing fuels in an existing infrastructure. Prog. Energy Combust. Sci., 84.

3. Oxidation of gaseous hydrocarbons, I: Thecatalytic action of water vapour in the oxidation of ethane;Chirkov;Dokl. Akad. Nauk SSSR,1944

4. Note on the Interaction of Methane and Water Vapor in the Hydrogen-Oxygen Reaction;Levy;J. Chem. Phys.,1953

5. Effects of water on the burning velocity of hydrogen-air flames;Kuehl;ARS J.,1962

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3