Determinants of Maximum Magnetic Anomaly Detection Distance

Author:

Li Hangcheng1ORCID,Luo Jiaming1,Zhang Jiajun2,Li Jing1,Zhang Yi1,Zhang Wenwei1,Zhang Mingji1

Affiliation:

1. Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China

2. Sanechips Technology Co., Ltd., Shenzhen 518055, China

Abstract

The maximum detection distance is usually the primary concern of magnetic anomaly detection (MAD). Intuition tells us that larger object size, stronger magnetization and finer measurement resolution guarantee a further detectable distance. However, the quantitative relationship between detection distance and the above determinants is seldom studied. In this work, unmanned aerial vehicle-based MAD field experiments are conducted on cargo vessels and NdFeB magnets as typical magnetic objects to give a set of visualized magnetic field flux density images. Isometric finite element models are established, calibrated and analyzed according to the experiment configuration. A maximum detectable distance map as a function of target size and measurement resolution is then obtained from parametric sweeping on an experimentally calibrated finite element analysis model. We find that the logarithm of detectable distance is positively proportional to the logarithm of object size while negatively proportional to the logarithm of resolution, within the ranges of 1 m~500 m and 1 pT~1 μT, respectively. A three-parameter empirical formula (namely distance-size-resolution logarithmic relationship) is firstly developed to determine the most economic sensor configuration for a given detection task, to estimate the maximum detection distance for a given magnetic sensor and object, or to evaluate minimum detectable object size at a given magnetic anomaly detection scenario.

Funder

National Natural Science Foundation of China

Guangdong Regular Universities Special Fund for Major Areas

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3