Experimental and Numerical Investigation of Bogie Hunting Instability for Railway Vehicles Based on Multiple Sensors

Author:

Zheng Biao1ORCID,Wei Lai1ORCID,Zeng Jing1,Zhang Dafu1

Affiliation:

1. State Key Laboratory of Rail Transit Vehicles System, Southwest Jiaotong University, Chengdu 610031, China

Abstract

Bogie hunting instability is one of the common faults in railway vehicles. It not only affects ride comfort but also threatens operational safety. Due to the lower operating speed of metro vehicles, their bogie hunting stability is often overlooked. However, as wheel tread wear increases, metro vehicles with high conicity wheel–rail contact can also experience bogie hunting instability. In order to enhance the operational safety of metro vehicles, this paper conducts field tests and simulation calculations to study the bogie hunting instability behavior of metro vehicles and proposes corresponding solutions from the perspective of wheel–rail contact relationships. Acceleration and displacement sensors are installed on metro vehicles to collect data, which are processed in real time in 2 s intervals. The lateral acceleration of the frame is analyzed to determine if bogie hunting instability has occurred. Based on calculated safety indicators, it is determined whether deceleration is necessary to ensure the safety of vehicle operation. For metro vehicles in the later stages of wheel wear (after 300,000 km), the stability of their bogies should be monitored in real time. To improve the stability of metro vehicle bogies while ensuring the longevity of wheelsets, metro vehicle wheel treads should be reprofiled regularly, with a recommended reprofiling interval of 350,000 km.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Sichuan

Development Project of the State Key Laboratory of Traction Power

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3