Predator-Proofing Avian Nestboxes: A Review of Interventions, Opportunities, and Challenges

Author:

Marcus Joseph M.1,Hart Adam G.1,Goodenough Anne E.1ORCID

Affiliation:

1. School of Education and Science, University of Gloucestershire, Francis Close Hall, Swindon Road, Cheltenham GL50 4AZ, UK

Abstract

Nestboxes are commonly used to increase the number and quality of nest sites available to birds that usually use tree cavities and are considered an important conservation intervention. Although usually safer than natural cavities, birds nesting in simple, unmodified wooden nestboxes remain at risk of depredation. Accordingly, numerous design and placement modifications have been developed to ‘predator-proof’ nestboxes. These include: (1) adding metal plates around entrance holes to prevent enlargement; (2) affixing wire mesh to side panels; (3) deepening boxes to increase distance to nest cup; (4) creating external entrance ‘tunnels’ or internal wooden ledges; (5) using more robust construction materials; (6) developing photosensitive shutters to exclude nocturnal predators; (7) using baffles to block climbing mammals; and (8) regular replacement and relocation. However, the benefits and costs of these modifications are not always well understood. In this global review, we collate information on predator-proofing avian nestboxes designed for tree cavity-nesting birds to assess the efficacy of techniques for different predators (mammalian, avian, and reptilian) in different contexts. We critique the potential for modifications to have unintended consequences—including increasing nest building effort, altering microclimate, reducing provisioning rate, and elevating ectoparasite and microbial loads—to identify hidden costs. We conclude by highlighting remaining gaps in knowledge and providing guidance on optimal modifications in different contexts.

Funder

University of Gloucestershire’s Environmental Dynamics and Governance Research Priory Area Studentship

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Economic Geology,Fuel Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3