A Novel Allocation Strategy Based on the Model Predictive Control of Primary Frequency Regulation Power for Multiple Distributed Energy Storage Aggregators

Author:

Mao Tian1ORCID,He Shan2,Guan Yingcong3,Liu Mingbo3,Zhao Wenmeng1,Wang Tao1,Tang Wenjun2

Affiliation:

1. Electric Power Research Institute, China Southern Power Grid, Guangzhou 510663, China

2. Shenzhen Power Supply Company, China Southern Power Grid, Shenzhen 518067, China

3. College of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China

Abstract

As the amount of distributed energy storage (DES) in a power system continues to increase, it will not be long before there are multiple DES aggregators participating in frequency regulation, and the realization of their coordinated control is a critical topic of current research. This study focused on the primary frequency regulation (PFR) power allocation strategy among multiple DES aggregators participating in PFR. This study first calculated the PFR demand according to a system frequency response model of the power system with DESs. Next, a PFR power allocation model of DES aggregators was developed based on model predictive control. The objective of this model was to minimize the overall frequency regulation cost while satisfying all of the constraints of DESs. Finally, the distributed interior point method was used to solve the model rapidly. The correctness and effectiveness of the proposed model and algorithm were verified on two unified transmission and distribution systems with DES aggregators used to supply the PFR service. The results revealed that the proposed model could effectively allocate PFR power to the various types of energy storage, with the additional benefits of slowing down the shift in the state of charge for energy storage units and ensuring the continuity of energy storage participation in frequency regulation.

Funder

Science and Technology Project of the China Southern Power Grid Company

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3