A Solar Photovoltaic Array and Grid Source-Fed Brushless DC Motor Drive for Water-Pumping Applications

Author:

Shukla Tanmay1ORCID,Nikolovski Srete2ORCID

Affiliation:

1. Department of Electrical Engineering, Maulana Azad National Institute of Technology, Bhopal 462003, India

2. Power Engineering Department, Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University of Osijek, K. Trpimira 2B, HR-31000 Osijek, Croatia

Abstract

This article presents a brushless DC motor drive using a solar photovoltaic (PV) array and grid. Solar PV array-fed drive systems typically need a DC–DC converter stage in order to optimize the solar PV array-generated power utilizing a maximum power point (MPP) tracking technique. In this work, a boost DC–DC converter is used for MPP tracking purposes. This work utilizes an incremental conductance (INC) MPP-tracking algorithm. A bridgeless asymmetrical converter without a bridge rectifier is used at the grid side to improve power quality at supply mains. The presented asymmetrical converter is an amalgamation of a second order (buck boost) with a fourth-order (Cuk) converter, which lowers the net system’s order. The input inductor of the Cuk converter manages the input current profile and, thus, eradicates the need for the filter at the grid mains. The bridgeless asymmetrical converter comes with several advantages, such as rectifier removal, component reduction, and input filter elimination. The performance of the brushless DC motor is examined in this article in all three scenarios: first, when grid and solar energy are both present; second, when solar energy is the only source of energy; and third, when grid energy is the only source of energy. The dual-source-based brushless DC motor drive system has been developed on matrix-laboratory/Simulink. The results are deployed and discussed to verify the drive-system performance. The article also presents a detailed stability analysis and mathematical modeling of the presented power-quality converter and MPP tracking converter to verify different converters’ stability using a bode diagram and a pole-zero plot.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Soft-Switched ZVS-ZCS Boost Converter Design and Analysis;2024 IEEE 3rd International Conference on Electrical Power and Energy Systems (ICEPES);2024-06-21

2. Maximizing solar water pump efficiency: Exploring MPPT strategies for optimization;AIP Advances;2024-04-01

3. Dual Active Bridge Converter's inherent soft switching Steady-State Analysis with Single and Dual Phase Shift Modulation;2024 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS);2024-02-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3